Acta Cryst. (1996). C52, 762-764

Cobalt Silicon Diphosphate, Co₂Si(P₂O₇)₂

ROBERT GLAUM AND ANETTE SCHMIDT

Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany. E-mail: robert.glaum@anorg.chemie.unigiessen.de

(Received 7 November 1995; accepted 18 December 1995)

Abstract

The structure of dicobalt(II) silicon bis[diphosphate-(4-)], Co₂Si(P₂O₇)₂, consists of compressed CoO₆ octahedra, SiO₄ tetrahedra and P₂O₇ groups with a P—O—P angle of 132.3 (1)°. Co₂O₁₀ units built from two edge-sharing CoO₆ octahedra are linked *via* four corners to other dimers, thus forming a two-dimensional network parallel to the *bc* plane. These planes are separated by bands formed from diphosphate groups and SiO₄ tetrahedra.

Comment

In the course of our investigations of the thermal behaviour and crystal chemistry of anhydrous phosphates of transition metals, we obtained cobalt silicon diphosphate as a product of chemical transport experiments intended to crystallize Co₂P₄O₁₂ (Thilo & Grunze, 1957). After the isotypic Cd₂Si(P₂O₇)₂ (Trojan, Brandová, Fábry, Hybler, Jurek & Petrícek, 1987), $Co_2Si(P_2O_7)_2$ is only the second mixed anhydrous phosphate of silicon with a late transition metal to be identified, whereas phosphates of silicon and the early transition metals, e.g. (VO)Si(PO₄)₂ (Middlemiss & Calvo, 1976), V₃P₅SiO₁₉ (Leclaire, Chaboun, Groult & Raveau, 1986) and Mo₄P₆Si₂O₂₅ (Leclaire, Lamire & Raveau, 1988), have been known for some time. An even wider variety of phosphate silicates is obtained by the introduction of alkali metals or alkaline earth metals in addition to the early transition metal (e.g. see Leclaire, Monier & Raveau, 1985).

The structure of $Co_2Si(P_2O_7)_2$ consists of compressed CoO_6 octahedra, almost ideal SiO_4 tetrahedra and P_2O_7 groups with an eclipsed conformation similar to that found in the triclinic modification of GeP_2O_7 (Kaiser & Glaum, 1994). The P—O—P bridging angle of 132.3 (1)° is rather small as a result of a chelate-type coordination to Co^{2+} (Fig. 1*a*). Two remarkably different P—O—Si bridging angles of 140.8 (1) and 168.9 (1)° are observed for $Co_2Si(P_2O_7)_2$, compared to 141.7 to 153.3° found in SiP_2O_7 (Tillmans, Gebert & Baur, 1973).

The structure contains seven independent O-atom sites. Two show threefold coordination (by one P atom

Fig. 1. (a) Projection of the title structure on the ac plane with schematic coordination polyhedra; P_2O_7 light grey, SiO_4 medium grey, CoO_6 dark grey. (b) Projection on the bc plane of sheets comprising dimeric Co_2O_{10} units. Both views were produced using ATOMS (Dowty, 1995).

and two Co atoms) while the other five show twofold coordination either by two P atoms, a P and an Si atom (twice) or a P and a Co atom (twice). As expected, the bond lengths around an O atom depend on its coordination number and the valence of the counter cations. Within the diphosphate group, the P— O distance to the bridging O atom is about 0.04 Å longer than to the O atom bonded to Si. The P— O bonds to those O^{2-} ions further bonded to Co are rather short [1.483 (2)–1.513 (2) Å]. These differences in bond length within the PO₄ groups are in agreement with bond length–bond strength considerations. Similar relations were observed in other diphosphates, *e.g.* SiP₂O₇ (Tillmans, Gebert & Baur, 1973).

Co is octahedrally coordinated by O atoms with two short (*ca* 1.98 Å) and four long (*ca* 2.28 Å) bonds. Two CoO₆ octahedra are linked by edge-sharing, thus forming Co₂O₁₀ units. These are connected by four corners with other dimers to form a two-dimensional network parallel to the *bc* plane (Fig. 1*b*). These planes are separated by bands formed from diphosphate groups and SiO₄ tetrahedra.

In contrast to red-violet $Co_2P_4O_{12}$, which contains only slightly distorted CoO_6 octahedra, the compressed octahedral geometry around Co^{2+} in the title compound leads to a pale blue-violet colour.

In addition to Co₂Si(P₂O₇)₂, three isotypic diphosphates M_2 Si(P₂O₇)₂ (M = Fe, Ni, Cu) have been synthesized. Their lattice parameters at ambient temperature were determined from Guinier photographs [Fe₂Si(P₂O₇)₂: a = 16.909 (6), b = 4.991 (1), c = 12.381 (5) Å, $\beta = 103.32$ (3)°; Ni₂Si(P₂O₇)₂: a = 16.892 (5), b = 4.900 (1), c = 12.215 (4) Å, $\beta = 103.73$ (3)°; Cu₂Si(P₂O₇)₂: a = 17.38 (1), b = 4.70 (1), c = 12.28 (1) Å, $\beta = 105.6$ (1)°; Glaum, Hofmann & Schmidt (1996)].

Experimental

Single crystals of $Co_2Si(P_2O_7)_2$ suitable for X-ray singlecrystal investigations were grown by isothermal heating of $Co_2P_4O_{12}$ (Thilo & Grunze, 1957) in silica ampoules at 1173 K under 3 atm (1 atm = 101 325 Pa) of chlorine as mineralizer. Migration in a temperature gradient from 1223 to 1123 K was not observed. Microcrystalline $Co_2Si(P_2O_7)_2$ was obtained as a single phase by heating pellets of stoichiometric mixtures of $Co_2P_4O_{12}$ and amorphous SiO_2 in silica ampoules at 1173 K using 10 mg NH₄Cl as mineralizer.

Crystal data

Co₂Si(P₂O₇)₂ $M_r = 493.83$ Monoclinic C2/c a = 16.897 (2) Å b = 4.9442 (5) Å c = 12.2950 (10) Å $\beta = 103.418 (9)^{\circ}$ $V = 999.1 (2) Å^{3}$ Z = 4 $D_r = 3.283 \text{ Mg m}^{-3}$ D_m not measured

Data collectionAED-2 diffractometer $\theta/2\theta$ scansAbsorption correction: ψ scan (North, Phillips ψ scan (North, Phillips ψ Mathews, 1968) $T_{min} = 0.587, T_{max} =$ 0.7255468 measured reflections1446 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.0200$ $wR(F^2) = 0.0505$ S = 1.0471446 reflections Mo $K\alpha$ radiation $\lambda = 0.71069$ Å Cell parameters from 68 reflections (19 independent) $\theta = 16.5-24.9^{\circ}$ $\mu = 4.174$ mm⁻¹ T = 293 (2) K Plate $0.10 \times 0.08 \times 0.02$ mm Pale violet

1123 observed reflections $[I > 2\sigma(I)]$ $R_{int} = 0.0381$ $\theta_{max} = 29.95^{\circ}$ $h = -23 \rightarrow 23$ $k = -6 \rightarrow 6$ $l = -17 \rightarrow 17$ 3 standard reflections frequency: 120 min intensity decay: none

Extinction correction: SHELXL93 (Sheldrick, 1993) Extinction coefficient: 0.0018 (2)

97 parameters

$$w = 1/[\sigma^2(F_o^2) + (0.0247P)^2 + 0.5839P]$$

where $P = (F_o^2 + 2F_c^2)/3$
 $(\Delta/\sigma)_{max} < 0.001$
 $\Delta\rho_{max} = 0.408 \text{ e} \text{ Å}^{-3}$
 $\Delta\rho_{min} = -0.404 \text{ e} \text{ Å}^{-3}$

Atomic scattering factors from *International Tables* for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

 Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	х	у	z	U_{ea}
Co	0.24670(2)	0.14994 (6)	0.62975 (2)	0.00773 (9)
Si	0	0.8439 (2)	3/4	0.00535 (15)
PI	0.12470 (3)	0.63442 (12)	0.63418 (4)	0.00626 (11)
P2	0.13536(3)	0.83091 (11)	0.41479 (4)	0.00596 (11)
01	0.04428 (9)	0.6531 (3)	0.67674 (12)	0.0090 (3)
O2	0.14261 (9)	0.3447 (3)	0.61930(12)	0.0111 (3)
O3	0.30755 (9)	0.3038 (3)	0.79627 (12)	0.0099 (3)
O4	0.09356 (10)	0.7791 (3)	0.51626(12)	0.0101 (3)
O5	0.34594 (9)	-0.0690(3)	0.63241 (12)	0.0108 (3)
O6	0.20389 (9)	1.0275 (3)	0.45361 (12)	0.0099 (3)
07	0.06365 (10)	0.9656 (3)	0.33043 (13)	0.0126 (3)

Table 2. Selected geometric parameters (Å, °)

Co02	1.983 (2)	Si—O1''	1.604 (2)
Co-05	1.990 (2)	P1	1.484(2)
Co	2.165 (2)	P1—O3`"	1.513(2)
Co-03	2.2024 (15)	P101	1.568 (2)
Co06"	2.2028 (15)	P104	1.593 (2)
Co-03 ¹¹¹	2.232 (2)	P2-05 ^{vm}	1,483(2)
Si—O7 ^w	1.590(2)	P2—O6	1.502(2)
Si—07`	1.590(2)	P2—O7	1.551(2)
Si-01	1.604 (2)	P2—O4	1.591 (2)
P1—O1—Si	140.81 (11)	P2`'''O5Co	136.39 (10)
P1	131.60 (10)	P2-06-Co'	132.82 (9)
P1 ^{III} O3Co	117.59 (8)	P2-06-Co ^{1x}	122.90 (9)
P1 ^{III} O3Co ^{vII}	121.50 (8)	Co ¹	100.85 (6)
СоО3Со ^{чи}	119.76 (7)	P2—O7—Si ^v	168.89 (13)
P2-04-P1	132.33 (11)		
c			

Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{3}{2} - y$, 1 - z; (ii) x, y - 1, z; (iii) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{3}{2} - z$; (iv) x, 2 - y, $\frac{1}{2} + z$; (v) -x, 2 - y, 1 - z; (vi) -x, y, $\frac{3}{2} - z$; (vii) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{3}{2} - z$; (viii) $\frac{1}{2} - x$, $\frac{1}{2} - y$, 1 - z; (ix) x, 1 + y, z.

Data collection: *Stadi-4 Software* using the peak/background method (Stoe & Cie, 1995). Cell refinement: *Stadi-4 Software*. Data reduction: *Stadi-4 Software*. Program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990). Program(s) used to refine structure: *SHELXL*93 (Sheldrick, 1993). Molecular graphics: *ATOMS* (Dowty, 1995). Software used to prepare material for publication: *SHELXL*93.

We thank Dr M. Serafin (Giessen) for the data collection. Continuing support by Professor Dr R. Gruehn (Giessen) is gratefully appreciated.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: JZ1108). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Dowty, E. (1995). ATOMS for Windows. Version 3.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA. Glaum, R., Hofmann, C. & Schmidt, A. (1996). In preparation.

- Kaiser, U. & Glaum, R. (1994). Z. Anorg. Allg. Chem. 616, 46–52.
 Leclaire, A., Chaboun, H., Groult, D. & Raveau, B. (1986). J. Solid State Chem. 65, 168–177.
- Leclaire, A., Lamire, M. & Raveau, B. (1988). Acta Cryst. C44, 1181-1184.
- Leclaire, A., Monier, J. C. & Raveau, B. (1985). Acta Cryst. C41, 1719-1720.
- Middlemiss, N. & Calvo, C. (1976). Acta Cryst. B32, 2896-2898.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Stoe & Cie (1995). Stadi-4 Software Manual. Stoe & Cie, Darmstadt, Germany.
- Thilo, E. & Grunze, I. (1957). Z. Anorg. Allg. Chem. 290, 209-222.
- Tillmans, E., Gebert, W. & Baur, W. H. (1973). J. Solid State Chem. 7, 69-84.
- Trojan, M., Brandová, D., Fábry, J., Hybler, J., Jurek, K. & Petrícek, V. (1987). Acta Cryst. C43, 2038–2040.